Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Untangling the chemical complexity of plastics to improve life cycle outcomes

Abstract

A diversity of chemicals are intentionally added to plastics to enhance their properties and aid in manufacture. Yet the accumulated chemical composition of these materials is essentially unknown even to those within the supply chain, let alone to consumers or recyclers. Recent legislated and voluntary commitments to increase recycled content in plastic products highlight the practical challenges wrought by these chemical mixtures, amid growing public concern about the impacts of plastic-associated chemicals on environmental and human health. In this Perspective, we offer guidance for plastics manufacturers to collaborate across sectors and critically assess their use of added chemicals. The ultimate goal is to use fewer and better additives to promote a circular plastics economy with minimal risk to humans and the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The life cycle of a plastic product.
Fig. 2: Conceptual package composition label of the future.

Similar content being viewed by others

References

  1. Aurisano, N., Weber, R. & Fantke, P. Enabling a circular economy for chemicals in plastics. Curr. Opin. Green. Sustain. Chem. 31, 100513 (2021).

    Article  CAS  Google Scholar 

  2. Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Carney Almroth, B., Dey, T., Karlsson, T. & Wang, M. Chemical simplification and tracking in plastics. Science 382, 525 (2023).

    Article  PubMed  Google Scholar 

  4. Zimmermann, L. et al. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 55, 11814–11823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dey, T. et al. Global plastic treaty should address chemicals. Science 378, 841–842 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Landrigan, P. J. et al. The Minderoo-Monaco Commission on Plastics and Human Health. Ann. Glob. Health 89, 23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maddela, N. R., Kakarla, D., Venkateswarlu, K. & Megharaj, M. Additives of plastics: entry into the environment and potential risks to human and ecological health. J. Environ. Manag. 348, 119364 (2023).

    Article  CAS  Google Scholar 

  8. Ragaert, K. et al. Clarifying European terminology in plastics recycling. Curr. Opin. Green. Sustain. Chem. 44, 100871 (2023).

    Article  Google Scholar 

  9. Brouwer, M. T., Alvarado Chacon, F. & Thoden Van Velzen, E. U. Effect of recycled content and rPET quality on the properties of PET bottles, part III: modelling of repetitive recycling. Packag. Technol. Sci. 33, 373–383 (2020).

    Article  CAS  Google Scholar 

  10. Gerassimidou, S. et al. Unpacking the complexity of the PET drink bottles value chain: a chemicals perspective. J. Hazard. Mater. 430, 128410 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Geueke, B., Phelps, D. W., Parkinson, L. V. & Muncke, J. Hazardous chemicals in recycled and reusable plastic food packaging. Camb. Prisms Plast. 1, 1–43 (2023).

    Article  Google Scholar 

  12. Global Plastics Outlook: Policy Scenarios to 2060 (OECD, 2022).

  13. Kuczenski, B. & Geyer, R. PET bottle reverse logistics — environmental performance of California’s CRV program. Int. J. Life Cycle Assess. 18, 456–471 (2013).

    Article  CAS  Google Scholar 

  14. Register, K. Littered Bottles and Cans: Higher in Virginia Than in States with Bottle Bills (Clean Virginia Waterways, Longwood University, 2020).

  15. Marturano, V., Cerruti, P. & Ambrogi, V. Polymer additives. Phys. Sci. Rev. https://doi.org/10.1515/9783110468281-005 (2017).

    Article  Google Scholar 

  16. Zweifel, H., Maier, R. D. & Schiller, M. Plastics Additives Handbook 6th edn (Hanser, 2009).

  17. Strong, A. B. Plastics: Materials and Processing (Pearson Prentice Hall, 2006).

  18. Li, H. et al. Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chem. 24, 8899–9002 (2022).

    Article  CAS  Google Scholar 

  19. Westlie, A. H. et al. Polyolefin innovations toward circularity and sustainable alternatives. Macromol. Rapid Commun. 43, 2200492 (2022).

    Article  CAS  Google Scholar 

  20. Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, 2000415 (2021).

    Article  CAS  Google Scholar 

  21. Liu, X., Gao, C., Sangwan, P., Yu, L. & Tong, Z. Accelerating the degradation of polyolefins through additives and blending. J. Appl. Polym. Sci. 131, app.40750 (2014).

    Article  Google Scholar 

  22. Selke, S. et al. Evaluation of biodegradation-promoting additives for plastics. Environ. Sci. Technol. 49, 3769–3777 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Napper, I. E. & Thompson, R. C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53, 4775–4783 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. Lond. B 364, 2027–2045 (2009).

    Article  CAS  Google Scholar 

  25. Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J. & Kane Driscoll, S. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environ. Toxicol. Chem. 35, 1667–1676 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Bridson, J. H., Gaugler, E. C., Smith, D. A., Northcott, G. L. & Gaw, S. Leaching and extraction of additives from plastic pollution to inform environmental risk: a multidisciplinary review of analytical approaches. J. Hazard. Mater. 414, 125571 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Muncke, J. et al. Scientific challenges in the risk assessment of food contact materials. Environ. Health Perspect. 125, 095001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hinton, Z. R. et al. Antioxidant-induced transformations of a metal-acid hydrocracking catalyst in the deconstruction of polyethylene waste. Green Chem. 24, 7332–7339 (2022).

    Article  CAS  Google Scholar 

  29. Lithner, D., Larsson, Å. & Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total. Environ. 409, 3309–3324 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Groh, K. J. et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total. Environ. 651, 3253–3268 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z. & Praetorius, A. Integrating a chemicals perspective into the global plastic treaty. Environ. Sci. Technol. Lett. 9, 1000–1006 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kahn, L. G., Philippat, C., Nakayama, S. F., Slama, R. & Trasande, L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 8, 703–718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barrick, A. et al. Plastic additives: challenges in ecotox hazard assessment. PeerJ 9, e11300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Geueke, B. et al. Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Crit. Rev. Food Sci. Nutr. 63, 9425–9435 (2022).

    Article  PubMed  Google Scholar 

  35. Lynch, J. M., Knauer, K. & Shaw, K. R. in Plastics and the Ocean (ed. Andrady, A. L.) 43–76 (Wiley, 2022).

  36. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182, 781–793 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Rummel, C. D. et al. Effects of leachates from UV-weathered microplastic in cell-based bioassays. Environ. Sci. Technol. 53, 9214–9223 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res. 184, 116170 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Amaneesh, C. et al. Gross negligence: impacts of microplastics and plastic leachates on phytoplankton community and ecosystem dynamics. Environ. Sci. Technol. 57, 5–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Karapanagioti, H. K. & Werner, D. in Hazardous Chemicals Associated with Plastics in the Marine Environment. Handbook of Environmental Chemistry Vol. 78 (eds Takada, H. & Karapanagioti, H. K.) 205–220 (Springer, 2019).

  42. Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Turner, A., Wallerstein, C., Arnold, R. & Webb, D. Marine pollution from pyroplastics. Sci. Total. Environ. 694, 133610 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C. & Wagner, M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ. Sci. Technol. 53, 11467–11477 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scholz, S. et al. The eco‐exposome concept: supporting an integrated assessment of mixtures of environmental chemicals. Environ. Toxicol. Chem. 41, 30–45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caporale, N. et al. From cohorts to molecules: adverse impacts of endocrine disrupting mixtures. Science 375, eabe8244 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Martin, O. et al. Ten years of research on synergisms and antagonisms in chemical mixtures: a systematic review and quantitative reappraisal of mixture studies. Environ. Int. 146, 106206 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Silva, E., Rajapakse, N. & Kortenkamp, A. Something from ‘nothing’ — eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 36, 1751–1756 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Signoret, C., Caro-Bretelle, A.-S., Lopez-Cuesta, J.-M., Ienny, P. & Perrin, D. Alterations of plastics spectra in MIR and the potential impacts on identification towards recycling. Resour. Conserv. Recycl. 161, 104980 (2020).

    Article  Google Scholar 

  51. Roosen, M. et al. Operational framework to quantify ‘quality of recycling’ across different material types. Environ. Sci. Technol. 57, 13669–13680 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gall, M., Freudenthaler, P. J., Fischer, J. & Lang, R. W. Characterization of composition and structure–property relationships of commercial post-consumer polyethylene and polypropylene recyclates. Polymers 13, 1574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rung, C. et al. Identification and evaluation of (non-)intentionally added substances in post-consumer recyclates and their toxicological classification. Recycling 8, 24 (2023).

    Article  Google Scholar 

  54. Ahamed, A. et al. Technical and environmental assessment of end-of-life scenarios for plastic packaging with electronic tags. Resour. Conserv. Recycl. 201, 107341 (2024).

    Article  Google Scholar 

  55. Bhubalan, K. et al. Leveraging blockchain concepts as watermarkers of plastics for sustainable waste management in progressing circular economy. Environ. Res. 213, 113631 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  57. Uekert, T. et al. Technical, economic, and environmental comparison of closed-loop recycling technologies for common plastics. ACS Sustain. Chem. Eng. 11, 965–978 (2023).

    Article  CAS  Google Scholar 

  58. Kusenberg, M. et al. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: to decontaminate or not to decontaminate? Waste Manag. 138, 83–115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jerdy, A. C. et al. Impact of the presence of common polymer additives in thermal and catalytic polyethylene decomposition. Appl. Catal. B 325, 122348 (2023).

    Article  CAS  Google Scholar 

  60. Scallon, C. UK circular economy explained. Biffa https://www.biffa.co.uk/biffa-insights/circular-economy-explainer---biffa-insights (2023).

  61. Anastas, P. T & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

  62. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Lubongo, C. & Alexandridis, P. Assessment of performance and challenges in use of commercial automated sorting technology for plastic waste. Recycling 7, 11 (2022).

    Article  Google Scholar 

  64. Bǎlan, S. A. et al. Optimizing chemicals management in the United States and Canada through the essential-use approach. Environ. Sci. Technol. 57, 1568–1575 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tsochatzis, E. D., Lopes, J. A. & Corredig, M. Chemical testing of mechanically recycled polyethylene terephthalate for food packaging in the European Union. Resour. Conserv. Recycl. 179, 106096 (2022).

    Article  CAS  Google Scholar 

  66. Schyns, Z. O. G., Patel, A. D. & Shaver, M. P. Understanding poly(ethylene terephthalate) degradation using gas-mediated simulated recycling. Resour. Conserv. Recycl. 198, 107170 (2023).

    Article  CAS  Google Scholar 

  67. Demets, R. et al. Addressing the complex challenge of understanding and quantifying substitutability for recycled plastics. Resour. Conserv. Recycl. 174, 105826 (2021).

    Article  Google Scholar 

  68. Ferg, E. E. & Bolo, L. L. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym. Test. 32, 1452–1459 (2013).

    Article  CAS  Google Scholar 

  69. A Chemicals Perspective on Designing with Sustainable Plastics: Goals, Considerations and Trade-Offs (OECD, 2021).

  70. Zimmermann, L. et al. Implementing the EU chemicals strategy for sustainability: the case of food contact chemicals of concern. J. Hazard. Mater. 437, 129167 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Cousins, I. T. et al. Finding essentiality feasible: common questions and misinterpretations concerning the ‘essential-use’ concept. Environ. Sci. Process. Impacts 23, 1079–1087 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fenner, K. & Scheringer, M. The need for chemical simplification as a logical consequence of ever-increasing chemical pollution. Environ. Sci. Technol. 55, 14470–14472 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Melnikov, F., Kostal, J., Voutchkova-Kostal, A., Zimmerman, J. B. & Anastas, P. T. Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chem. 18, 4432–4445 (2016).

    Article  CAS  Google Scholar 

  74. Lizarraga, L. E. et al. Advancing the science of a read-across framework for evaluation of data-poor chemicals incorporating systematic and new approach methods. Regul. Toxicol. Pharmacol. 137, 105293 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Mayr, A., Klambauer, G., Unterthiner, T. & Hochreiter, S. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2015.00080 (2016).

    Article  Google Scholar 

  76. Klambauer, G., Clevert, D.-A., Shah, I., Benfenati, E. & Tetko, I. V. Introduction to the special issue: AI meets toxicology. Chem. Res. Toxicol. 36, 1163–1167 (2023).

    Article  PubMed  Google Scholar 

  77. Ward, C. P., Reddy, C. M., Edwards, B. & Perri, S. T. To curb plastic pollution, industry and academia must unite. Nature 625, 658–662 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

    Article  CAS  Google Scholar 

  79. James, B. D., Ward, C. P., Hahn, M. E., Thorpe, S. J. & Reddy, C. M. Minimizing the environmental impacts of plastic pollution through eco-design of products with low environmental persistence. ACS Sustain. Chem. Eng. 12, 1185–1194 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chemicals in Plastics (UNEP, 2023).

  81. Fantke, P., Aurisano, N., Provoost, J., Karamertzanis, P. G. & Hauschild, M. Toward effective use of REACH data for science and policy. Environ. Int. 135, 105336 (2020).

    Article  PubMed  Google Scholar 

  82. Customisation Opportunities of IUCLID for the Management of Chemical Data 3rd edn. OECD Series on Testing and Assessment No. 297 (OECD, 2023).

  83. Krebs, A. et al. The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Arch. Toxicol. 94, 2435–2461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Richard, A. M. et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Williams, A. J. et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J. Cheminformatics 9, 61 (2017).

    Article  Google Scholar 

  86. Olker, J. H. et al. The ECOTOXicology Knowledgebase: a curated database of ecologically relevant toxicity tests to support environmental research and risk assessment. Environ. Toxicol. Chem. 41, 1520–1539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Winder, C., Azzi, R. & Wagner, D. The development of the Globally Harmonized System (GHS) of classification and labelling of hazardous chemicals. J. Hazard. Mater. 125, 29–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Globally Harmonized System for the Classification and Labeling of Chemicals 10th revised edn (UNECE, 2023).

  89. Groh, K. J., Geueke, B., Martin, O., Maffini, M. & Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 150, 106225 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Scheringer, M., Johansson, J. H., Salter, M. E., Sha, B. & Cousins, I. T. Stories of global chemical pollution: will we ever understand environmental persistence? Environ. Sci. Technol. 56, 17498–17501 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Cousins, I. T., Ng, C. A., Wang, Z. & Scheringer, M. Why is high persistence alone a major cause of concern? Environ. Sci. Process. Impacts 21, 781–792 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Yazid, M. F. H. A., Ta, G. C. & Mokhtar, M. Classified chemicals in accordance with the globally harmonized system of classification and labeling of chemicals: comparison of lists of the European Union, Japan, Malaysia and New Zealand. Saf. Health Work 11, 152–158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. A Framework to Guide Selection of Chemical Alternatives (National Research Council, 2014).

Download references

Acknowledgements

The authors thank S. Trenor and K. Kortsen for feedback on earlier drafts of the manuscript. K.L.L. was supported by March Marine Initiative (a programme of March Limited, Bermuda). M.J.S. acknowledges support from the Donahue Center for Business Ethics and Social Responsibility at the University of Massachusetts Lowell and funding from NSF CAS-MNP grant no. 2304991. M.P.S. thanks the Industrial Strategy Challenge Fund in Smart Sustainable Plastic Packaging (grant NE/V01045X/1). M.E.H. was supported by March Marine Initiative and by the Woods Hole Center for Oceans and Human Health (funding from NIH/NIEHS grant P01ES028938 and NSF grant OCE-1840381).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and content of the manuscript, including drafting, creating display items, editing and revision.

Corresponding author

Correspondence to Kara Lavender Law.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Kathryn Beers, Zhanyun Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Design for Recycling Guidance: https://recyclass.eu/news/apr-and-recyclass-work-to-align-design-for-recycling-guidance/

Directive 2019/904 of the European Parliament: https://eur-lex.europa.eu/eli/dir/2019/904/oj

Ellen MacArthur Foundation Global Commitment: https://www.ellenmacarthurfoundation.org/global-commitment-2022/overview

Open 3P: https://www.open3p.org/

Plastic Additive Standards Guide: https://www.accustandard.com/media/assets/Plastic_Add_Guide2018.pdf

Plastics Pact Network: https://www.ellenmacarthurfoundation.org/the-plastics-pact-network

Position Statement on Biobased and Biodegradable Plastic: https://files.worldwildlife.org/wwfcmsprod/files/Publication/file/5tm1hfp3vz_WWF_Position_Biobased_and_Biodegradable_Plastic.pdf

Position Statement on Degradable Additives: https://plasticsrecycling.org/images/position_statements/APR-Position-Degradable-Additives.pdf

RecyClass Testing Methods: https://recyclass.eu/recyclability/test-methods/

Statement on Oxo-Degradable Plastic Packaging: https://emf.thirdlight.com/link/kfivzcx91l81-86a71k/@/preview/1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law, K.L., Sobkowicz, M.J., Shaver, M.P. et al. Untangling the chemical complexity of plastics to improve life cycle outcomes. Nat Rev Mater 9, 657–667 (2024). https://doi.org/10.1038/s41578-024-00705-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00705-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene